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Perturbation model to predict the effect of spatially varying absorptive inhomogeneities
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We develop a perturbation model to predict the effect of a spatially varying absorptive inhomogeneities in a
diffusing slab. The model is based on a perturbation solution of diffusion equation derived for a refractive
index mismatch between the scattering slab and the surrounding medium, through the use of the extrapolated
boundary conditions. We show that the model allows to compute the time-dependent relative change in the
transmitted signal resulting from the presence of the inclusion. We derive simplified expressions for the
perturbed time-resolved transmittance that allows to implement an efficient fitting procedure for obtaining the
optical properties of the absorptive inclusion. The accuracy of the predictions of the model was investigated
through comparison with the results of the Finite Element Method to solve the time-dependent diffusion
equation numerically. The procedure is used to obtain the absorption perturbation parameter of an absorptive
inclusion characterized by spatially dependent Gaussian distribution of its absorption coefficient located at the
midplane of a scattering slab.
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[. INTRODUCTION slab of a given thickness, for the particular case of a homo-
geneous scattering medium. Expressions have also been de-
The study of light propagation through highly scatteringrived for the perturbation on the diffuse reflectance and
media is a topic of a rapidly growing research area, espetransmittance caused by a small inclusion with a spatially
cially in the framework of biomedical applicatioi&—4]. uniform optical properties differing slightly from those of the
This has been motivated by the fact that imaging througthost medium[13—17. It has been showf18,19 that the
tissues using light in the near infrared spectral region is charesults for this simple geometry are of valuable practical in-
acterized by a penetration capability of several centimeterterest, inasmuch as the diffusion equation is an adequate
due to the low absorption of the tissufs,6]. As an ul- model for the photon density distribution. Indeed, to be of
trashort laser light pulse enters a slab of scattering materiapractical interest, any approximate perturbation-based
such as a thick tissue, the phase and polarization of thecheme for image reconstruction has to predict, as accurate
propagating electromagnetic field are randomized because aE possible, the effect of the inhomogeneities that cause per-
scattering and they lose their physical relevance. Therefore, arbation on photon migration in an otherwise homogeneous
more suitable description based only on the energetic aspeatsiperturbed medium. The basic purpose of a perturbation
accounts for the photon migration through the medidh  model is to provide an efficient curve-fitting procedure to
Such a description relies on a radiative transfer equation thatutput the parameters of the analytical solution and, in par-
considers the spatial redistribution of the light irradiance in-ticular, the optical coefficients of the inclusion as well as
side the medium. The radiative transfer equation cannot btheir spatial distribution over the probed region, which is a
solved analytically in a closed form, but it can be made moresignificant task for tissue type recognition. In principle, the
tractable through various approximatiof. Of these ap- prediction of perturbation model is expected to give accurate
proximations, the most widely used in the field of bio-opticsresults when the effect of the inclusion on photon migration
and in imaging in optically thick tissues assumes that thas smaller. This means that differences of the optical coeffi-
photon fluence rate, i.e., the local photon density, be deeients of the inclusion with respect to the surrounding me-
scribed by a time-dependent diffusion equatf®h An im-  dium and the volume of the inhomogeneity are small. Con-
portant application is the optical tomography in medical im-sequently, it is important to develop a perturbation model
aging, such as breast cancer detection, in which timethat takes into account the effect of spatially varying optical
resolved techniques are used to produce imaging in highlparameters of the inclusion and to investigate the accuracy of
scattering medig4,10]. Analytical expressions for the time- the model when the volume of the inclusion cannot be ne-
resolved transmittance and reflectance have been obtaingtected even if we limit to a first-order approximation per-
[11,17 for simple geometries such as an infinitely extendedurbation scheme.
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Our purpose is to develop a consistent perturbation model

0
that accounts for the effect of spatially varying optical pa- r.
rameters of an absorptive inclusion and to better understanc  S(r.tr.t) r
the limitations of the small volume approximation on the : r
: o .
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perturbed time-resolved transmittance. This model is ex-

pected to be more effective in the realistic case of imaging

reconstruction of inclusions whose optical properties change MDetector

continuously going from the region of the anomalous defect . o

to the surrounding normal tissue. FIG. 1. Geometric scheme of an infinitely extended homoge-
In Sec. Il we will asses the problem and consider the cas8®°Ys slab.

of spatially dependent Gaussian distributed absorptive inclu- . L . .

sionpemb)éddepd in a thick diffusing slab, in coafial probeby the following parabolic differential equation:

beam-detector configuration. We will show that for this

model, it is possible to arrive at particularly simple expres-

sions to describe the change in the time-resolved transmit-

tance resulting from the presence of the inclusion; expres-

sions of the time-resolved contrast functions are derived for aherev is the speed of light in the medium. The general

DV2— Ei_
Ma

v &t (I)(ryt;rsats):_S(r!t;rsyts)! (1)

refractive-index mismatch between the scattering slab an olution(Green’s function of Eq. (1) for an isotropic source

the surrounding medium by using the extrapolated bounda%ga?nlggizﬁI?/Seg;t/eenndebg homogeneous scattering and absorb-

conditions.

The simplicity of the perturbed expressions allows for a Ir—rg?
fast and reliable implementation of a fitting procedure for v ex;{—,uav(t—ts)— —
recovering the optical parameters of the absorptive inhomo- 4, (r—rot—ty)= 4Du(t—ty _
geneity. This is of particular significance in optical detection ~ © s [47Dv(t—tg)]%?
of absorptive inclusions such as the case of many kinds of (2

tumors in near infrared20]. In Sec. Ill the time-resolved

contrast function computed by the perturbation model havén order to describe the internal redistribution of light due to
been compared with that obtained by the Finite Elementhe Fresnel reflections at the slab interfaces, we have to con-
Method (FEM) simulations to solve the time-dependent dif- sider the relative refractive index i.e., the ratio between the
fusion equation numerically in presence of the spatially varyrefractive index of the scattering medium and that of the
ing absorptive inclusion. In Sec. IV we have developed a€xternal one. It has been shoy21-23 that the two mis-
detailed quantitative investigation of the accuracy of the prematched boundaries can be described by the following two
dictions and of the application range of the proposed modegXpressions, namely:

through comparison of the perturbed time-resolved transmit-
tance with that obtained by the FEM. The FEM calculations
are used to validate the perturbed model by determining the
relative error of the fitting procedure for obtaining the ab-
sorption perturbation parameter of the inclusion for different P

optical parameters of the host medium and of the size of the ~ P(X.Y,Z=dtirs,t) == Ze——(X,Y,Zti1 5, t5) [
inhomogeneity. (3b)

b
(D(X,y,Z: Oytv rSItS) = ZeE(X,y,Z,t; rS7tS)|Z=01 (33)

The quantityz, in Egs.(3) is the so-called extrapolated dis-
Il. THEORY tance, and is given by the simple relatioA(@)D, where
the coefficientA(n) takes into account the effects of the
_ co Fresnel reflections at the two interfaces and can be obtained

Let us consider an infinitely extended homogeneous slakhrough a seven-order polynomial approximation in terms of

with thicknessd, absorption and the reduced scattering coefthe relative refractive inder [23]. For example, if we con-
ficients u, and ug, respectively, and diffusion coefficient sider a relative refractive index af=1.4 [24] the corre-
D=1/3ug. Within the diffusion approximation, when a sponding value of the coefficied(n) is 2.95 and the dis-
pulsed laser beam hits normally upon the surface of the slahance z, between the extrapolated boundaries and the
the temporal and spatial distribution of the light can be desurfaces of the slab ig,=5.88D=1.97/u.. A further ap-
rived by assuming that all photons are initially isotropically proximation is commonly used to solve H@) together with
scattered at a depth=1/u¢ below the surface. With refer- the boundary conditions given by Eq€3), according to
ence to Fig. 1, the isotropic pointlike sour&r,t;rg,ts) which the fluence rate is set to 0 at the two extrapolated
=58(r—rgd(t—tg)/4m is located atrg=(Xs,Ys,Zs=1/ul) boundariez= -z, andz=d+z,, i.e., one assumes
and emits a pulse of unit energy at tirve t.

A. Homogeneous slab solution

The light propagates in the medium undergoing many D(X,y,z= —2Z¢,t;r5,t5) =0,
scattering events and its density photon fluence rate
d(r,t;rg,t) at positionr=(x,y,z) and timet is described d(X,y,z=d+ 2z ,t;rg,t5)=0. 4
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The expression for the fluence ratr,t;rg,t;), which sat- corresponding to E(q5), it can be derived quite straightfor-
isfies the extrapolated boundary conditions given by(&y. wardly by applying to Eq(1) the separation of variables.
is obtained 23] by using the basic isotropic solutidg) and The physical quantity of interest is the transmittarice
by adding an infinite number of dipoles located along zhe through the slab, given by the Fick law,

axis, representing pairs of negative and positive pointlike
sources, namely, EY
T(rmyt;rSvts):_47TDE(rmat;rS!ts)|zm=da 9

P2
v ex;{ —Mav(t—ts)— m}
S wherer ,,= (X ,Ym,d) is @ measurement point on tlze-d
47[4Dv(t—tg)]3? surface at time (see Fig. 1 If we take into account bound-
o 5 ary condition (3b), we can express the transmittance
( % (Z_ Z+m)
X > {ex

(D(r,t;rs,ts):

T(rm,t;rs,ts) directly in terms of the fluence rate

m<  47Du(t—ty) ®(r,t;rg,tg) in the following form:
Z—7_ )2
Cexp - 2l ] 5 oy 2T .
47Du(t—ty) T(rm,tirg,ty) =——=dP(ry,t;rg,tg), (10
A(n)
wherep is the radial distance between positionsndr; the
quantitiesz,, ,, andz_, given by where thed (r,,t;rs,ts) is given by the previously derived
Eq. (8).
Zym=2mMdy+ Zs, Equation(4) for the fluence rate describes the basic solu-
tion of the homogeneous slab problem and will be used in
Z_n=2md,—27,— 7, (6)  the following for calculating the first-order perturbed time-

resolved transmittance.
define the locations of the positive and negative pointlike
sources along the axis, andd,=d+ 2z, is the extrapolated
thickness of the slab. In the following we will recast Ef) ) ) . ) )
for the fluence rate in a different form which will result in a  Localized slight changes in optical properties of an homo-
more amenable and compact expression for the timed€neous turbid medium result in a cha_mge in the photon flg-
resolved transmittanc ., when an inhomogeneity is ence rate and, cc_)nsequen_tly, in the t|_me-resolved transmit-
present. For the purpose we make use of the following Pois@nce. The analytical solution of the diffusion equation that

B. Gaussian absorptive inclusion

son summation formula, namely: accounts for the effect of an inclusion on the light propaga-
tion in a turbid medium cannot be obtained, in general. How-
1 = 7(z+m)? ever, under the conditig®®|<®, within the Born approxi-
— 2 ex;{ - —} mation, changes in absorption and scattering affect the
Vit m==ee t fluence rate linearly and independently. The change in the
% photon fluence ratéd can be shown to be equal fa5]
= 2 ex-m’nt-i2mmz]. @) SO(r,)= 6D, (1,0)+ b,/ (r.0), (11)

By using the above formula into Ed5), after somewhat
lengthy but straightforward algebra we obtain the following
expression for the fluence rade(r,t;rg,ts):

wheres® , (r.t) describes the effect of an absorptive inclu-

sion on the light distribution within an otherwise homoge-
neous medium and, similarlyg® ,/(r,t) describes the per-

p? turbation to the photon density due to a diffusive inclusion.
ex[{_ﬂ/av(t_ts)_ m} Let us consider the injection of a pulsed laser beam into a
5 ° slab of turbid medium in which an inclusion is to be detected
87 Ddg(t—ts) in a coaxial measurement arrangement. This measurement
scheme has been employed for inclusion characterization in

D(r,t;rg,ty)=

xS exd - m’m*Dot’ | (mW(ZSJr Ze) a turbid slab with time-resolved transmittance measurements.

m=1 dg de Furthermore, general time-domain expressions for the pertur-
bation of the light transmittance that results from localized

% sin mm(z+ Ze)) ®) slight changes in absorption and scattering .coeffig:ien'ts of the
de ' turbid slab have been reported when the inclusion is small

enough to be considered pointlikes,16. In this scheme the
Equation(8) is basically a Fourier series development of theprobe beam, the inclusion, and the detector are collinear. The
fluence rate and it is easy to see that each term of this seris#tuation to be considered in the following is an absorptive
satisfies the extrapolated boundary conditions given by Ednclusion of cylindrical shape geometry. In Fig. 2 the inclu-
(4). Although Eq.(8) for the fluence rate is the Poisson sumsion is depicted as a cylinder of heighttentered az=z,.
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FIG. 2. Geometric scheme assumed for the perturbation model. A Gaussian absorptive inclusion of cylindrical shape geometry with
radiusR and heighth is centred aiz=z, inside a turbid slab of thicknest A pulsed light beam illuminates the front surface of the
scattering slab at plane=0. The time-resolved transmittance is measured by a detector atzptatheoaxial with the source and with the
inclusion.

whose spatial dependent absorption coefficient is assumed to D per(1, 1575, ts=0) = D(r,t;r,t=0)
be varying along the radial distanpg according to a Gauss-
ian distribution law, namely, +6P, (r.tirs,ts=0), (14

2
p
Spra(rp)= A,Laexp[ —21n z(ﬁp

: (120 where ®(r,t;rs,ts=0) is the solution of the unperturbed
problem given by Eq(8). The corresponding perturbed time-

In Eq. (12) Ap, is the value of the Gaussian absorptive resolved transmittance can be written in the following form

inclusion on the cylinder axis and corresponds to the maxi-
mum deviation of the absorption coefficient of the inclusion
from the unperturbed valyg, . The radiusRk that determines
the radial size of the inclusion has been defined such that the +6T, (Im tirs,ts=0), (15
value of the absorption coefficient of the inclusion decreases @

to Au,/4 at a distancep,=R from the cylinder axis. As

described in the preceding section we consider a slab %herer is the measurement point. Equatiét6) can be
thicknessd containing a Dirags-point source located at dis- o ogjly gerived by inserting E414) for the perturbed fluence
tance 1/, which emits a pulse of unit energy at time (46 into the basic relationship between the time-resolved
=0. According to the first-order perturbation method yansmittance and the fluence rate given by Ed). We
[26,27, the general expression for computing the changgptain the change in the time-resolved transmittance

Tpert(rm Gl ts=0)=T(rpy,tirs,ts=0)

6@, (r.,1) is given by the following: ST(rm.t;rs,ts=0) in terms of the corresponding change in
the photon fluence rate according to
t
BcDMa(r,t;;rs,tS:O):—Jodt’J J J drpdma(rp)
2
XD(r, ;1 1) D(rp,t';15,0). 5T#a(rm,t;rs,ts=0)= méCI)Ma(rm,t;rs,tS:O).
(13) (16)

Here, the spatial integration is carried out over the region of . . . .

the inclusioFr)1 and thegtime integration goes from theginitialUp to this point the derived expressions&p,, and oT,,,
time ts=0 to the timet at which the photon density is mea- are quite general within the first-order approximation theory.
sured. The functiond(r,t;r,,t') is recognizable as the In the following, we employ the Gaussian absorptive inclu-
Green function given by Eq(8) where the coordinates Sion model as given by Ed12) and determine the change
(rs.ts) of the source are replaced by,(t’). Similarly, the 6T, in the time-resolved transmittance in the case of the
function®(r,t";rs,0) is the fluence rate at tinteand posi-  slab geometry and confocal detection arrangement schemati-
tion r, of the inclusion due to a pointlike source located atcally shown in Fig. 2. If we substitute Eg&l2) and(8) into
position rg at time t=0. Within the first-order approxima- the perturbation integrdll3) and perform the Gaussian inte-
tion, the perturbed photon fluenc@,.(r t;rs,ts=0) is  gration over the radial coordinajg,, we arrive after some
given by manipulation at the following expression féﬂ'ﬂa:
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0T, (Zn=d,t;zs= Upd ,ts=0)

A o0
e S exp[_ﬂavt

 2A(n)w2D%d?t k1
m?Dot(k?+1?)

207 R 1 (R,1) 2y 1(Zpc,h).

7

In Eq. (17) we have introduce®y (R,t), which is a func-
tion of the radiusk of the inclusion, namely,

Rze_ak,lﬁ ) )
Ry (R = W{[E|(ak,l(ﬂ+ 1))—Ei(ey,(B—1))]
+e?*kIP[Ei(— oy (B+1))
—Ei(—ay (B—1)1}, (18
where
_ 7*Dut(k®—1?) 19
GITT g
R2
P=N1* 250tz 20
and the exponential integral Ei is given by
© e_y
Ei(x)=— —dy,
0= "%y
where the principal value of the integral is taken.
The functionZ |(z,¢,h) is given by
de _r{lw(dJrze) [km(zs+20)
Z1(Zpe,h)= s sin
i Zpe )= S i1 de de
Mm—n)(Z.+2)]
«| (ke 1ysin ZN= M (Ze+2)
de
M+ n)(Ze+2z) ] |27 %pct 2
e z=2,,~h/2
(21
z=27pc+hi2

where by the notatioh - - |
of the values of the function between=z,.+h/2 andz

=Z,.—h/2. It can be verified that the general expressions fo

Ry, (R,t) and 2, (z,¢,h) reduce fork=1 to the following
form:

mR?

(B
48In2 "

Ry k(R,1) = -1

: (22

2= 20—hi2 we mean the difference

I
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FIG. 3. Temporal profiles of the time-resolved transmittances
Tperd(t) @and T, n(t) computed by using the perturbation model and
the FEM simulation, respectively, for two values of the relative
absorptive perturbation parametéru,/u,=—0.6 andAu,/pn,
=0.6. Results refer to a turbid slab of thicknelss40 mm, relative
refractive indexn=1.4, absorption coefficient,,=0.02 mn1 %,
and reduce scattering coefficignf=1.5 mni 1. The inhomogene-
ity is located at the midplane of the slata) the radius of the
inclusion isR=2.5 mm, (b) R=10.0 mm.

h
d, | (m+n) ze+zpc+§
Zk,k(ch,h)=§+47Tk sin d
e
h
_ (m+n) ze+zpc—§ s
—sin a (23)

In the following section we will develop a thorough
analysis of the perturbation model predictions based on
Eq. (17).

IIl. DESCRIPTION OF THE NUMERICAL SIMULATIONS

The analytical solution for the chan@'#a in the time-

resolved transmittance has been derived in the preceding sec-
tion in the framework of the first-order perturbation approxi-
mation to the diffusion equation, in the case of a spatially
varying Gaussian distributed absorptive inclusion and simple
slab geometry. The perturbed solution is approximated since
it has been obtained assuming that the inhomogeneity causes
small perturbations on photon migration through the homo-
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FIG. 4. Time-resolved contrast functiodd ,¢(t)/T(t) and 6T, ,(t)/T(t) computed by the perturbation model and the FEM simula-
tion, respectively, for two values of the relative absorptive perturbafign,/u,= —0.6 andA w,/u,=0.6. Row panels are obtained for the
same value of the reduced scattering coefficight column panels are obtained for the same value of theRiziethe inclusion. The other

parameters are the same as of Fig. 3.

geneous medium and, consequently, it is expected to giveéhe FEM has been employed to solve diffusion equation
accurate results only when local changes in the optical ab24) under extrapolated boundary conditiort®5). This
sorption coefficient and the size of the inhomogeneity aranethod has been shown to be a robust and efficient scheme
small with respect to the homogeneous medium. In the folfor solving the diffusion equation in the case of complex
lowing, the accuracy of the perturbed transmittaifigg,(t) geometry and inhomogeneous medi28—30. Figure 3
is investigated through comparisons with the numerical soshows the temporal profiles of the time-resolved transmit-
lution T,,(t), obtained by solving thg diffusion equation tancesT,e(t) and T,,n(t) computed by using the first-
for the fluence rateb,.(r,t;rs,ts=0) in presence of the order perturbation model and the FEM simulations, respec-
spatially dependent absorptive inhomogenéit®), namely,  tively, in the coaxial probe beam-detector configuration.
The numerical results refer to a diffusing slab of 40 mm
thick. The center of the absorptive inhomogeneity is located
at a deptre,.=d/2 in the central plane of the slab, where the
contrast function attains its lower vallig5]. The scattering
and the absorption coefficients of the unperturbed medium

190
DVZ— 5 Ef[zua+ 5:“a(r)] q)num(r’t;rsvts: 0)

1
=== 6(r—rg (1),

A1 @4 \were assumed to bp.=1.5mm* and u,=0.02 mm %,
respectively, and the mismatch in the refractive index was set
with the two extrapolated boundary conditions to the value 1.4. These parameters are of practical interest
since they are representatives of a slightly compressed breast
O (XY 2= — 70 T t)=0 [16]. The comparison between the perturbation magselids
num X,Y, ert1is1s ' curves and the FEM resulfdashed curvess shown in Figs.
3(a) and 3b) for two values of the radius of the inclusion,
D um( XY, z=d+2z.,t;rg,t)=0. (25 R=2.5 mm andR=10 mm, respectively. In the numerical
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F'_G- 5. Numericgl calculatiop of the reIaFive erreg, as a FIG. 6. Numerical calculation of the relative erre, as a
function of the relative absorptive perturbatidnu,/p, for us  function of the relative absorptive perturbatidty,/um, for .

=05 mm *. The four panels are obtained for increasing values—1 o mm 1. The four panels are obtained for increasing values
(form top to bottor of the absorption coefficient of the host me- (form top to bottom of the absorption coefficient of the host me-
dium: ,LLaZO.OOS, 0.01, 0.02, 0.025 mn’L dium: Ma:0-005v 0.01, 0.02, 0.025 m*nﬁ.

calculation, the thicknesls of the cylindrical inclusion was The contrast function defined in E63a in terms of the
equal to its diameter R. For R=2.5 mm the perturbation relative change in the perturbed transmittance signal, when
model predictions are in excellent agreement with the FEMhe probe beam and the detector are aligned, is consistent
simulations for absorptive perturbatiodu,/un, ranging  with that used in Refd15,31]. Similarly, Eq.(26b) gives the
from —60% to 60% and the two time-resolved transmittancerelative change in the transmittance signal as obtained by the
curves are almost indistinguishable. Discrepancies betwedfEM simulation of the absorptive inclusion. The solid curves
FEM simulations and perturbation model predictions becomén Fig. 4 illustrate the temporal behavior of the contrast
evident with increasing radius of the inhomogeneity; thesT,,.(t)/T(t), employing the same slab geometry and ab-
first-order perturbation model tends to underestimate thsorption coefficient of the host medium as used to generate
transmittance values, as it can be clearly seen in Fig. 3 Fig. 3. The dashed curves are the predictions of the perturbed
where the radius i®=10 mm. In order to develop a more model 6Te(t)/T(t). Inspection of the curves shows that
close comparison between the first-order perturbation modehere is a significant enhancement of the contrast for increas-
results and the FEM simulations, we have plotted in Fig. 4ing values ofR and ., over the temporal range of the trans-
the temporal dependence of the contrast functionsnitted signal and over the considered range of absorptive
OTpert)/T(t) and 8T,,,(t)/T(t) for increasing values of perturbation Aw,/um,. The discrepancies of the
the inhomogeneity radii and of the reduced scattering coefperturbation-model-based results remain withi@0% until
ficient u¢ of the host medium. The two functions are givenR<5 mm andu. <1 mm ! and increase significantly for
by higher values of the scattering coefficignt and of the ra-
dius R of the inclusion. It is also clear from the numerical
SToon(t) Toan(t)=T(1) results that the perturbation model genera}lly under_estimates
pert®) _ _pert (269 the contrast compared to the FEM simulation, the discrepan-
T(t) T(t) ' cies for negative values of the absorptive perturbation
Aupglu, being more marked than those corresponding to
positive values. This behavior can be understood from the
OTnun(t) _ Thun() = T(1) (26b) fact that in the former case the perturbed transmittance signal
T(t) T(1) is higher contributing more to the contrast function. This can
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also be appreciated from the plots of the temporal profiles of oe]  omt5 mm®  1,=0.010 e

the transmittance curves shown in FigbBfor Au,/u, o4l 04 P
=—0.6. 02] 02]
0ot 004 o
IV. ANALYSIS OF THE ACCURACY OF THE g O o o e
PERTURBATION MODEL AND DISCUSSION g :: i :: <y
The analytical model for the perturbed time-resolved g oo} o8t d

transmittanceT ,¢(t) as expressed by Eqsl5) and (17) o1 oy
was implemented in a least square fitting procedure. This  *?1 21

permitted the homogeneous slab solutibft) plus the ab- 4 e

sorptive perturbatio®T,, (t) to be fitted to a FEM simula- M
tion for a slab containing a Gaussian absorptive inclusion.

This model always considers a single defect that has diam- o6} ye1smm® ,=0020mm" 6] y=1Smm’ y=0.025 mm’,
eter 2R equal to the heightt and that is placed at the center 041 e T e

Z,.=d/2 of an otherwise homogeneous slab with thickness o2y

d=40 mm and refractive index mismateh=1.4. The two oot M oot D/‘,/g-goﬁ'z""d
Lot g [ '7’

parameters describing optically the host medium, the absorp- g e o2 ‘ o8

tion and scattering coefficients, were obtained from the fitof & *‘7~ . /./ M/

T(t) to the FEM simulation results in the case of the coaxial % ”: S/ :: SF
configuration without the absorptive cylindrical inclusion. ol K /’ —oRs

[ / --0-- R ® §,0mm
d o R @ 7.50wm
[ & 41 —<o—R s 10mm

Thus, in the fitting procedure of the perturbed transmittance,
we allowed only the absorptive perturbation paramétgr,
to vary. We obtained meaningful results through the analysis

[
\\\
PN
N
.

161 164
of the fitted valueA u, ¢;; for different choices of the optical o8 a4 4z o0 oz o1 oo 28 04 02 00 02 04 o8
parameters of the host medium and for different values of the aul, A,
sizeR and A u, parameter of the inhomogeneity. The linear . . )
least square fitting proceduf82,33 determinesA u, ¢, by FIG. 7. Numerical calculation of the relative erreg, as a
minimizing the y? parameter defined as function of the relative absorptive perturbatidu,/u, for ug
=15 mm!. The four panels are obtained for increasing values
, [tme Tpert() = Thum(t) 2 (f_orm top to bottom of the absorptlonicoefflment of the host me-
X°= dt, (27 dium: u,=0.005, 0.01, 0.02, 0.025 mm.
tmin Tnum(t)

hereT. (1) is the ti ved t it ted The general behavior that can be deduced from each fig-
\kl)v etrrele “T:”é,\al IS 'melalt'n;?]-re;r? dvetherargsnm:a agfe.rizmrgltj.gn ure is that the relative error increases with increasing the
y simuiatl 9 integratl fibsorption coefficient for given values qf., R, and

[tmin.tmax] depends on its temporal extent. The accuracy o ; o
the perturbation model can be quantitatively investigated byA'U‘a/'ua' This can be understaod by taking into account the

calculating the relative errar,,, defined as statistical weight factor exp- | B[”3+A“a(r)]dl}’ which de-
a scribes the probability of survival of a photon following a

Ao A o trajectory of length inside the region of the absorptive in-
€r, = 2Ha Phlatit (28)  clusion and which accounts for the decrease of the transmit-

a Apa ted intensity. If we fix the value of the relative perturbation
. o ] Ap,/p, and consider increasing values @f, the corre-
which expresses the deviation of the fitted valigs, rit Of  sponding absorption perturbatianu., increases, leading to a
the absorptive inclusion from the expected 0Ag,. This  progressive reduction of the perturbed transmitted signal
error is basically a measure of the discrepancies betweefith respect to the unperturbed one and to a corresponding
Tpert(t) andTyyn(t) through the capability of the fitting pro-  decrease of the accuracy of the perturbation model. It can
cedure of recovering from the perturbed mofigh,(t), the  aiso be seen that the relative eriqy, becomes higher for

expected valua u, of the absorption inclusion. Figures 5, 6, increasing values of the siZR of the inclusion, as can be

and 7 show the relative err@,,, as a function of the ab- expected by considering that photon migration is more af-
sorptive perturbatiom 1,/ 14 in the range—0.6 to 0.6 for  fected by higher values of the size of the inclusion and, con-
three values of the reduced scattering coefficigtlt,  sequently, the perturbation model predictions become less
namely, x.=0.5,1.0,1.5 mm?, respectively. Each figure accurate. Another feature that can be deduced from the nu-
shows four panels corresponding to increasing values of thmerical results reported in the plots is the evident asymmetry
host absorption coefficient, u,=0.005,0.01,0.02,0.025 of the relative error between positive and negative values of
mm~ %, and to four values of the radilR of the inclusion the relative absorptive perturbatiaxw,/u,. The absolute
ranging fromR=2.5 mm toR=10 mm. The relative error values of the relative error are higher for negative values of
depends critically on the optical parameters of the host meA n,/ 1, as compared to those computed for positive values,
dium. a result that is consistent with our previous discussion on
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discrepancies between the FEM-simulation-based contratdted to functional imaging. An analytical expression has
OTnum(t)/T(t) and 8T (t)/T(t) given in Egs.(268 and  been derived that accounts for the change in the time-
(26b). A photon passing through a positive absorptive inclu-resolved transmittance in presence of the absorptive Gauss-
sion has a higher probability of being absorbed compared tan inclusion. The accuracy and the application range of the
that traversing the same path in a negative absorptive incliperturbed model has been investigated by comparing time-
sion, leading in the former case to a transmittance signal thaksolved transmittance profiles obtained by the perturbed ex-
deviates less with respect to the unperturbed one. ThereforgressiOn with those obtained through the FEM simulations of
the fitting procedure is expected to be more accurate in thee giffusion equation in presence of the inclusion. We have
case of positive absorption inclusion. From the analysis Ofjgtermined the relative error in recovering the absorption
Figs. 5-7 it can also be clearly seen that the relative ermopq . hation parameter of the inclusion by the fitting proce-
ms:reases with increasing the reduced scattering coefficie re. The analysis considered the case of absorptive inclu-
ps Of the surroundmg medium. For a degree of Fhe relat'vesions located at the middle plane of the slab, since in this
absor.ptlon perturbatlomua/MaKZQ%, the rglatlve_ error configuration the contrast functions attain their lower values.
€A, IS less than 20% when the size of the inclusiorRis Sizes and optical parameters of the inclusion and host me-
=5 mm in the considered range of the reduced scatteringjym have been chosen so as to cover the range of values of
coefficient ng and for absorption coefficientna  practical interest in optical imaging of biological tissue. It
<0.025 mm*. has been shown that the perturbed model predictions become
less accurate by increasing the size and the absorption coef-
V. CONCLUSIONS ficient of the inclusion and also by increasing the values of

To summarize, we have performed a detailed analysis foi® optical coefficient of the host medium. The proposed
the problem of photon migration through a scattering S|aboertgrbat|qn model attains an accuracy better than 20% when
containing a single absorptive inclusion whose absorptiodl€ inclusion has a size less than 5 mm and the relative
coefficient is characterized by a Gaussian distribution in thébsorptive perturbation parameteX u,/u,|<20% in the
radial direction. The analysis has been performed within th&€onsidered range of absorption and reduced scattering coef-
framework of the first-order perturbation approach to the dif-ficient of the host medium. Furthermore, the FEM simula-
fusion theory for a slab geometry and a coaxial measuremetions have shown that the accuracy of the perturbation model
arrangement. The proposed model can be used to descrieless than 10% for sizes of the inclusion less than 2.5 mm
the effect of an inclusion on light propagation through anover the extended range of the absorptive perturbation
otherwise homogeneous turbid medium for applications refA u,/ u,| <60%.
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