
PHYSICAL REVIEW E 68, 021901 ~2003!
Perturbation model to predict the effect of spatially varying absorptive inhomogeneities
in diffusing media
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We develop a perturbation model to predict the effect of a spatially varying absorptive inhomogeneities in a
diffusing slab. The model is based on a perturbation solution of diffusion equation derived for a refractive
index mismatch between the scattering slab and the surrounding medium, through the use of the extrapolated
boundary conditions. We show that the model allows to compute the time-dependent relative change in the
transmitted signal resulting from the presence of the inclusion. We derive simplified expressions for the
perturbed time-resolved transmittance that allows to implement an efficient fitting procedure for obtaining the
optical properties of the absorptive inclusion. The accuracy of the predictions of the model was investigated
through comparison with the results of the Finite Element Method to solve the time-dependent diffusion
equation numerically. The procedure is used to obtain the absorption perturbation parameter of an absorptive
inclusion characterized by spatially dependent Gaussian distribution of its absorption coefficient located at the
midplane of a scattering slab.
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I. INTRODUCTION

The study of light propagation through highly scatteri
media is a topic of a rapidly growing research area, es
cially in the framework of biomedical applications@1–4#.
This has been motivated by the fact that imaging throu
tissues using light in the near infrared spectral region is ch
acterized by a penetration capability of several centime
due to the low absorption of the tissues@5,6#. As an ul-
trashort laser light pulse enters a slab of scattering mate
such as a thick tissue, the phase and polarization of
propagating electromagnetic field are randomized becaus
scattering and they lose their physical relevance. Therefo
more suitable description based only on the energetic asp
accounts for the photon migration through the medium@7#.
Such a description relies on a radiative transfer equation
considers the spatial redistribution of the light irradiance
side the medium. The radiative transfer equation canno
solved analytically in a closed form, but it can be made m
tractable through various approximations@8#. Of these ap-
proximations, the most widely used in the field of bio-opti
and in imaging in optically thick tissues assumes that
photon fluence rate, i.e., the local photon density, be
scribed by a time-dependent diffusion equation@9#. An im-
portant application is the optical tomography in medical i
aging, such as breast cancer detection, in which tim
resolved techniques are used to produce imaging in hig
scattering media@4,10#. Analytical expressions for the time
resolved transmittance and reflectance have been obta
@11,12# for simple geometries such as an infinitely extend
1063-651X/2003/68~2!/021901~10!/$20.00 68 0219
e-

h
r-
rs

al,
e
of

, a
cts

at
-
e

e

e
e-

-
-

ly

ed
d

slab of a given thickness, for the particular case of a hom
geneous scattering medium. Expressions have also bee
rived for the perturbation on the diffuse reflectance a
transmittance caused by a small inclusion with a spatia
uniform optical properties differing slightly from those of th
host medium@13–17#. It has been shown@18,19# that the
results for this simple geometry are of valuable practical
terest, inasmuch as the diffusion equation is an adeq
model for the photon density distribution. Indeed, to be
practical interest, any approximate perturbation-ba
scheme for image reconstruction has to predict, as accu
as possible, the effect of the inhomogeneities that cause
turbation on photon migration in an otherwise homogene
unperturbed medium. The basic purpose of a perturba
model is to provide an efficient curve-fitting procedure
output the parameters of the analytical solution and, in p
ticular, the optical coefficients of the inclusion as well
their spatial distribution over the probed region, which is
significant task for tissue type recognition. In principle, t
prediction of perturbation model is expected to give accur
results when the effect of the inclusion on photon migrat
is smaller. This means that differences of the optical coe
cients of the inclusion with respect to the surrounding m
dium and the volume of the inhomogeneity are small. Co
sequently, it is important to develop a perturbation mo
that takes into account the effect of spatially varying opti
parameters of the inclusion and to investigate the accurac
the model when the volume of the inclusion cannot be
glected even if we limit to a first-order approximation pe
turbation scheme.
©2003 The American Physical Society01-1
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Our purpose is to develop a consistent perturbation mo
that accounts for the effect of spatially varying optical p
rameters of an absorptive inclusion and to better unders
the limitations of the small volume approximation on t
perturbed time-resolved transmittance. This model is
pected to be more effective in the realistic case of imag
reconstruction of inclusions whose optical properties cha
continuously going from the region of the anomalous def
to the surrounding normal tissue.

In Sec. II we will asses the problem and consider the c
of spatially dependent Gaussian distributed absorptive in
sion embedded in a thick diffusing slab, in coaxial pro
beam-detector configuration. We will show that for th
model, it is possible to arrive at particularly simple expre
sions to describe the change in the time-resolved trans
tance resulting from the presence of the inclusion; exp
sions of the time-resolved contrast functions are derived f
refractive-index mismatch between the scattering slab
the surrounding medium by using the extrapolated bound
conditions.

The simplicity of the perturbed expressions allows fo
fast and reliable implementation of a fitting procedure
recovering the optical parameters of the absorptive inho
geneity. This is of particular significance in optical detecti
of absorptive inclusions such as the case of many kind
tumors in near infrared@20#. In Sec. III the time-resolved
contrast function computed by the perturbation model h
been compared with that obtained by the Finite Elem
Method ~FEM! simulations to solve the time-dependent d
fusion equation numerically in presence of the spatially va
ing absorptive inclusion. In Sec. IV we have developed
detailed quantitative investigation of the accuracy of the p
dictions and of the application range of the proposed mo
through comparison of the perturbed time-resolved trans
tance with that obtained by the FEM. The FEM calculatio
are used to validate the perturbed model by determining
relative error of the fitting procedure for obtaining the a
sorption perturbation parameter of the inclusion for differe
optical parameters of the host medium and of the size of
inhomogeneity.

II. THEORY

A. Homogeneous slab solution

Let us consider an infinitely extended homogeneous s
with thicknessd, absorption and the reduced scattering co
ficients ma and ms8 , respectively, and diffusion coefficien
D51/3ms8 . Within the diffusion approximation, when
pulsed laser beam hits normally upon the surface of the s
the temporal and spatial distribution of the light can be
rived by assuming that all photons are initially isotropica
scattered at a depthz51/ms8 below the surface. With refer
ence to Fig. 1, the isotropic pointlike sourceS(r ,t;r s,ts)
5d(r2r s)d(t2ts)/4p is located atr s5(xs ,ys ,zs51/ms8)
and emits a pulse of unit energy at timet5ts .

The light propagates in the medium undergoing ma
scattering events and its density photon fluence
F(r ,t;r s,ts) at positionr5(x,y,z) and timet is described
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by the following parabolic differential equation:

FD¹22
1

v
]

]t
2maGF~r ,t;r s,ts!52S~r ,t;r s,ts!, ~1!

where v is the speed of light in the medium. The gene
solution~Green’s function! of Eq. ~1! for an isotropic source
in an infinitely extended homogeneous scattering and abs
ing medium is given by

FG~r2r s,t2ts!5

v expF2mav~ t2ts!2
ur2r su2

4Dv~ t2ts!
G

@4pDv~ t2ts!#
3/2

.

~2!

In order to describe the internal redistribution of light due
the Fresnel reflections at the slab interfaces, we have to
sider the relative refractive indexn, i.e., the ratio between the
refractive index of the scattering medium and that of t
external one. It has been shown@21–23# that the two mis-
matched boundaries can be described by the following
expressions, namely:

F~x,y,z50,t;r s,ts!5ze

]F

]z
~x,y,z,t;r s,ts!uz50 , ~3a!

F~x,y,z5d,t;r s,ts!52ze

]F

]z
~x,y,z,t;r s,ts!uz5d .

~3b!

The quantityze in Eqs.~3! is the so-called extrapolated dis
tance, and is given by the simple relation 2A(n)D, where
the coefficientA(n) takes into account the effects of th
Fresnel reflections at the two interfaces and can be obta
through a seven-order polynomial approximation in terms
the relative refractive indexn @23#. For example, if we con-
sider a relative refractive index ofn51.4 @24# the corre-
sponding value of the coefficientA(n) is 2.95 and the dis-
tance ze between the extrapolated boundaries and
surfaces of the slab isze55.88D51.97/ms8 . A further ap-
proximation is commonly used to solve Eq.~1! together with
the boundary conditions given by Eqs.~3!, according to
which the fluence rate is set to 0 at the two extrapola
boundariesz52ze andz5d1ze , i.e., one assumes

F~x,y,z52ze ,t;r s,ts!50,

F~x,y,z5d1ze ,t;r s,ts!50. ~4!

FIG. 1. Geometric scheme of an infinitely extended homo
neous slab.
1-2
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The expression for the fluence rateF(r ,t;r s,ts), which sat-
isfies the extrapolated boundary conditions given by Eq.~4!,
is obtained@23# by using the basic isotropic solution~2! and
by adding an infinite number of dipoles located along thz
axis, representing pairs of negative and positive pointl
sources, namely,

F~r ,t;r s,ts!5

v expF2mav~ t2ts!2
r2

4Dv~ t2ts!
G

4p@4Dv~ t2ts!#
3/2

3 (
m52`

` H expF2
~z2z1m!2

4pDv~ t2ts!
G

2expF2
~z2z2m!2

4pDv~ t2ts!
G J , ~5!

wherer is the radial distance between positionsr andr s; the
quantitiesz1m andz2m given by

z1m52mde1zs ,

z2m52mde22ze2zs , ~6!

define the locations of the positive and negative pointl
sources along thez axis, andde5d12ze is the extrapolated
thickness of the slab. In the following we will recast Eq.~5!
for the fluence rate in a different form which will result in
more amenable and compact expression for the ti
resolved transmittanceTpert when an inhomogeneity is
present. For the purpose we make use of the following P
son summation formula, namely:

1

At
(

m52`

`

expF2
p~z1m!2

t G
5 (

m52`

`

exp@2m2pt2 i2mpz#. ~7!

By using the above formula into Eq.~5!, after somewhat
lengthy but straightforward algebra we obtain the followi
expression for the fluence rateF(r ,t;r s,ts):

F~r ,t;r s,ts!5

expF2mav~ t2ts!2
r2

4Dv~ t2ts!
G

8p2Dde~ t2ts!

3 (
m51

`

expF2
p2m2Dvt8

de
2 GsinS mp~zs1ze!

de
D

3sinS mp~z1ze!

de
D . ~8!

Equation~8! is basically a Fourier series development of t
fluence rate and it is easy to see that each term of this s
satisfies the extrapolated boundary conditions given by
~4!. Although Eq.~8! for the fluence rate is the Poisson su
02190
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corresponding to Eq.~5!, it can be derived quite straightfor
wardly by applying to Eq.~1! the separation of variables.

The physical quantity of interest is the transmittanceT
through the slab, given by the Fick law,

T~rm ,t;r s,ts!524pD
]F

]z
~rm ,t;r s,ts!uzm5d , ~9!

whererm5(xm ,ym ,d) is a measurement point on thez5d
surface at timet ~see Fig. 1!. If we take into account bound
ary condition ~3b!, we can express the transmittan
T(rm ,t;r s,ts) directly in terms of the fluence rat
F(r ,t;r s,ts) in the following form:

T~rm ,t;r s,ts!5
2p

A~n!
F~rm ,t;r s,ts!, ~10!

where theF(rm ,t;r s,ts) is given by the previously derived
Eq. ~8!.

Equation~4! for the fluence rate describes the basic so
tion of the homogeneous slab problem and will be used
the following for calculating the first-order perturbed tim
resolved transmittance.

B. Gaussian absorptive inclusion

Localized slight changes in optical properties of an hom
geneous turbid medium result in a change in the photon
ence rate and, consequently, in the time-resolved trans
tance. The analytical solution of the diffusion equation th
accounts for the effect of an inclusion on the light propag
tion in a turbid medium cannot be obtained, in general. Ho
ever, under the conditionudFu!F, within the Born approxi-
mation, changes in absorption and scattering affect
fluence rate linearly and independently. The change in
photon fluence ratedF can be shown to be equal to@25#

dF~r ,t !5dFma
~r ,t !1dFm

s8
~r ,t !, ~11!

wheredFma
(r ,t) describes the effect of an absorptive incl

sion on the light distribution within an otherwise homog
neous medium and, similarly,dFm

s8
(r ,t) describes the per

turbation to the photon density due to a diffusive inclusio
Let us consider the injection of a pulsed laser beam int
slab of turbid medium in which an inclusion is to be detect
in a coaxial measurement arrangement. This measurem
scheme has been employed for inclusion characterizatio
a turbid slab with time-resolved transmittance measureme
Furthermore, general time-domain expressions for the pe
bation of the light transmittance that results from localiz
slight changes in absorption and scattering coefficients of
turbid slab have been reported when the inclusion is sm
enough to be considered pointlike@15,16#. In this scheme the
probe beam, the inclusion, and the detector are collinear.
situation to be considered in the following is an absorpt
inclusion of cylindrical shape geometry. In Fig. 2 the incl
sion is depicted as a cylinder of heighth centered atz5zpc
1-3
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FIG. 2. Geometric scheme assumed for the perturbation model. A Gaussian absorptive inclusion of cylindrical shape geom
radiusR and heighth is centred atz5zpc inside a turbid slab of thicknessd. A pulsed light beam illuminates the front surface of th
scattering slab at planez50. The time-resolved transmittance is measured by a detector at planez5d coaxial with the source and with th
inclusion.
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whose spatial dependent absorption coefficient is assume
be varying along the radial distancerp according to a Gauss
ian distribution law, namely,

dma~r p!5DmaexpF22 ln 2S rp

R D 2G , ~12!

In Eq. ~12! Dma is the value of the Gaussian absorpti
inclusion on the cylinder axis and corresponds to the ma
mum deviation of the absorption coefficient of the inclusi
from the unperturbed valuema . The radiusR that determines
the radial size of the inclusion has been defined such tha
value of the absorption coefficient of the inclusion decrea
to Dma/4 at a distancerp5R from the cylinder axis. As
described in the preceding section we consider a slab
thicknessd containing a Diracd-point source located at dis
tance 1/ms8 , which emits a pulse of unit energy at timets

50. According to the first-order perturbation metho
@26,27#, the general expression for computing the chan
dFma

(r ,t) is given by the following:

dFma
~r ,t;;r s,ts50!52E

0

t

dt8E E E dr pdma~r p!

3F~r ,t;r p ,t8!F~r p ,t8;r s,0!.

~13!

Here, the spatial integration is carried out over the region
the inclusion and the time integration goes from the init
time ts50 to the timet at which the photon density is mea
sured. The functionF(r ,t;r p ,t8) is recognizable as the
Green function given by Eq.~8! where the coordinate
(r s,ts) of the source are replaced by (r p ,t8). Similarly, the
function F(r p ,t8;r s,0) is the fluence rate at timet and posi-
tion r p of the inclusion due to a pointlike source located
position r s at time t50. Within the first-order approxima
tion, the perturbed photon fluenceFper(r ,t;r s,ts50) is
given by
02190
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Fper~r ,t;r s,ts50!5F~r ,t;r s,ts50!

1dFma
~r ,t;;r s,ts50!, ~14!

where F(r ,t;r s,ts50) is the solution of the unperturbe
problem given by Eq.~8!. The corresponding perturbed time
resolved transmittance can be written in the following for

Tpert~rm ,t;r s,ts50!5T~rm ,t;r s,ts50!

1dTma
~rm ,t;r s,ts50!, ~15!

where rm is the measurement point. Equation~15! can be
easily derived by inserting Eq.~14! for the perturbed fluence
rate into the basic relationship between the time-resol
transmittance and the fluence rate given by Eq.~10!. We
obtain the change in the time-resolved transmittan
dT(rm ,t;r s,ts50) in terms of the corresponding change
the photon fluence rate according to

dTma
~rm ,t;r s,ts50!5

2p

A~n!
dFma

~rm ,t;r s,ts50!.

~16!

Up to this point the derived expressions ofdFma
anddTma

are quite general within the first-order approximation theo
In the following, we employ the Gaussian absorptive inc
sion model as given by Eq.~12! and determine the chang
dTma

in the time-resolved transmittance in the case of
slab geometry and confocal detection arrangement schem
cally shown in Fig. 2. If we substitute Eqs.~12! and~8! into
the perturbation integral~13! and perform the Gaussian inte
gration over the radial coordinaterp , we arrive after some
manipulation at the following expression fordTma

:

1-4
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dTma
~zm5d,t;zs51/ms8 ,ts50!

52
Dma

2A~n!p2D2de
2t

(
k,l 51

`

expF2mavt

2
p2Dvt~k21 l 2!

2de
2 GRk,l~R,t !Zk,l~zpc ,h!.

~17!

In Eq. ~17! we have introducedRk,l(R,t), which is a func-
tion of the radiusR of the inclusion, namely,

Rk,l~R,t !5
pR2e2ak,lb

8ak,l ln 2
$@Ei„ak,l~b11!…2Ei„ak,l~b21!…#

1e2ak,lb@Ei„2ak,l~b11!…

2Ei„2ak,l~b21!…#%, ~18!

where

ak,l5
p2Dvt~k22 l 2!

2de
2

, ~19!

b5A11
R2

2Dvt ln 2
, ~20!

and the exponential integral Ei(x) is given by

Ei~x!52E
2x

` e2y

y
dy,

where the principal value of the integral is taken.
The functionZk,l(zpc ,h) is given by

Zk,l~zpc ,h!5
de

2p~k22 l 2!
sinF lp~d1ze!

de
GsinFkp~zs1ze!

de
G

3U~k1 l !sinFp~m2n!~ze1z!

de
G

2~k2 l !sinFp~m1n!~ze1z!

de
GU

z5zpc2h/2

z5zpc1h/2

,

~21!

where by the notationu•••uz5zpc2h/2
z5zpc1h/2 we mean the difference

of the values of the function betweenz5zpc1h/2 and z
5zpc2h/2. It can be verified that the general expressions
Rk,l(R,t) and Zk,l(zpc ,h) reduce fork5 l to the following
form:

Rk,k~R,t !5
pR2

4b ln 2
lnS b11

b21D , ~22!
02190
r

Zk,k~zpc ,h!5
h

2
1

de

4pk
H sinFp~m1n!S ze1zpc1

h

2D
de

G
2sinFp~m1n!S ze1zpc2

h

2D
de

G J . ~23!

In the following section we will develop a thoroug
analysis of the perturbation model predictions based
Eq. ~17!.

III. DESCRIPTION OF THE NUMERICAL SIMULATIONS

The analytical solution for the changedTma
in the time-

resolved transmittance has been derived in the preceding
tion in the framework of the first-order perturbation appro
mation to the diffusion equation, in the case of a spatia
varying Gaussian distributed absorptive inclusion and sim
slab geometry. The perturbed solution is approximated si
it has been obtained assuming that the inhomogeneity ca
small perturbations on photon migration through the hom

FIG. 3. Temporal profiles of the time-resolved transmittanc
Tpert(t) andTnum(t) computed by using the perturbation model a
the FEM simulation, respectively, for two values of the relati
absorptive perturbation parameter,Dma /ma520.6 andDma /ma

50.6. Results refer to a turbid slab of thicknessd540 mm, relative
refractive indexn51.4, absorption coefficientma50.02 mm21,
and reduce scattering coefficientms851.5 mm21. The inhomogene-
ity is located at the midplane of the slab:~a! the radius of the
inclusion isR52.5 mm, ~b! R510.0 mm.
1-5



la-
e

DE NICOLA, ESPOSITO, AND LEPORE PHYSICAL REVIEW E68, 021901 ~2003!
FIG. 4. Time-resolved contrast functionsdTpert(t)/T(t) anddTnum(t)/T(t) computed by the perturbation model and the FEM simu
tion, respectively, for two values of the relative absorptive perturbation,Dma /ma520.6 andDma /ma50.6. Row panels are obtained for th
same value of the reduced scattering coefficientms8 ; column panels are obtained for the same value of the sizeR of the inclusion. The other
parameters are the same as of Fig. 3.
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geneous medium and, consequently, it is expected to
accurate results only when local changes in the optical
sorption coefficient and the size of the inhomogeneity
small with respect to the homogeneous medium. In the
lowing, the accuracy of the perturbed transmittanceTpert(t)
is investigated through comparisons with the numerical
lution Tnum(t), obtained by solving the diffusion equatio
for the fluence rateFnum(r ,t;r s,ts50) in presence of the
spatially dependent absorptive inhomogeneity~12!, namely,

FD¹22
1

v
]

]t
2@ma1dma~r !#GFnum~r ,t;r s,ts50!

52
1

4p
d~r2r s!d~ t !, ~24!

with the two extrapolated boundary conditions

Fnum~x,y,z52ze ,t;r s,ts!50,

Fnum~x,y,z5d1ze ,t;r s,ts!50. ~25!
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The FEM has been employed to solve diffusion equat
~24! under extrapolated boundary conditions~25!. This
method has been shown to be a robust and efficient sch
for solving the diffusion equation in the case of compl
geometry and inhomogeneous media@28–30#. Figure 3
shows the temporal profiles of the time-resolved transm
tancesTpert(t) and Tnum(t) computed by using the first
order perturbation model and the FEM simulations, resp
tively, in the coaxial probe beam-detector configuration.

The numerical results refer to a diffusing slab of 40 m
thick. The center of the absorptive inhomogeneity is loca
at a depthzpc5d/2 in the central plane of the slab, where th
contrast function attains its lower value@15#. The scattering
and the absorption coefficients of the unperturbed med
were assumed to bems851.5 mm21 and ma50.02 mm21,
respectively, and the mismatch in the refractive index was
to the value 1.4. These parameters are of practical inte
since they are representatives of a slightly compressed b
@16#. The comparison between the perturbation model~solids
curves! and the FEM result~dashed curves! is shown in Figs.
3~a! and 3~b! for two values of the radius of the inclusion
R52.5 mm andR510 mm, respectively. In the numerica
1-6
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PERTURBATION MODEL TO PREDICT THE EFFECT OF . . . PHYSICAL REVIEW E 68, 021901 ~2003!
calculation, the thicknessh of the cylindrical inclusion was
equal to its diameter 2R. For R52.5 mm the perturbation
model predictions are in excellent agreement with the F
simulations for absorptive perturbationDma /ma ranging
from 260% to 60% and the two time-resolved transmittan
curves are almost indistinguishable. Discrepancies betw
FEM simulations and perturbation model predictions beco
evident with increasing radius of the inhomogeneity; t
first-order perturbation model tends to underestimate
transmittance values, as it can be clearly seen in Fig.~b!
where the radius isR510 mm. In order to develop a mor
close comparison between the first-order perturbation mo
results and the FEM simulations, we have plotted in Fig
the temporal dependence of the contrast functi
dTpert(t)/T(t) and dTnum(t)/T(t) for increasing values o
the inhomogeneity radii and of the reduced scattering co
ficient ms8 of the host medium. The two functions are give
by

dTpert~ t !

T~ t !
5

Tpert~ t !2T~ t !

T~ t !
, ~26a!

dTnum~ t !

T~ t !
5

Tnum~ t !2T~ t !

T~ t !
. ~26b!

FIG. 5. Numerical calculation of the relative erroreDma
as a

function of the relative absorptive perturbationDma /ma for ms8
50.5 mm21. The four panels are obtained for increasing valu
~form top to bottom! of the absorption coefficient of the host m
dium: ma50.005, 0.01, 0.02, 0.025 mm21.
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The contrast function defined in Eq.~26a! in terms of the
relative change in the perturbed transmittance signal, w
the probe beam and the detector are aligned, is consis
with that used in Refs.@15,31#. Similarly, Eq.~26b! gives the
relative change in the transmittance signal as obtained by
FEM simulation of the absorptive inclusion. The solid curv
in Fig. 4 illustrate the temporal behavior of the contra
dTnum(t)/T(t), employing the same slab geometry and a
sorption coefficient of the host medium as used to gene
Fig. 3. The dashed curves are the predictions of the pertu
model dTpert(t)/T(t). Inspection of the curves shows th
there is a significant enhancement of the contrast for incre
ing values ofR andms8 over the temporal range of the tran
mitted signal and over the considered range of absorp
perturbation Dma /ma . The discrepancies of the
perturbation-model-based results remain within;20% until
R&5 mm andms8&1 mm21 and increase significantly fo
higher values of the scattering coefficientms8 and of the ra-
dius R of the inclusion. It is also clear from the numeric
results that the perturbation model generally underestim
the contrast compared to the FEM simulation, the discrep
cies for negative values of the absorptive perturbat
Dma /ma being more marked than those corresponding
positive values. This behavior can be understood from
fact that in the former case the perturbed transmittance si
is higher contributing more to the contrast function. This c

s

FIG. 6. Numerical calculation of the relative erroreDma
as a

function of the relative absorptive perturbationDma /ma for ms8
51.0 mm21. The four panels are obtained for increasing valu
~form top to bottom! of the absorption coefficient of the host me
dium: ma50.005, 0.01, 0.02, 0.025 mm21.
1-7
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also be appreciated from the plots of the temporal profile
the transmittance curves shown in Fig. 3~b! for Dma /ma
520.6.

IV. ANALYSIS OF THE ACCURACY OF THE
PERTURBATION MODEL AND DISCUSSION

The analytical model for the perturbed time-resolv
transmittanceTpert(t) as expressed by Eqs.~15! and ~17!
was implemented in a least square fitting procedure. T
permitted the homogeneous slab solutionT(t) plus the ab-
sorptive perturbationdTma

(t) to be fitted to a FEM simula-
tion for a slab containing a Gaussian absorptive inclusi
This model always considers a single defect that has di
eter 2R equal to the heighth and that is placed at the cent
zpc5d/2 of an otherwise homogeneous slab with thickn
d540 mm and refractive index mismatchn51.4. The two
parameters describing optically the host medium, the abs
tion and scattering coefficients, were obtained from the fi
T(t) to the FEM simulation results in the case of the coax
configuration without the absorptive cylindrical inclusio
Thus, in the fitting procedure of the perturbed transmittan
we allowed only the absorptive perturbation parameterDma
to vary. We obtained meaningful results through the analy
of the fitted valueDma, f i t for different choices of the optica
parameters of the host medium and for different values of
sizeR andDma parameter of the inhomogeneity. The line
least square fitting procedure@32,33# determinesDma, f i t by
minimizing thex2 parameter defined as

x25E
tmin

tmaxS Tpert~ t !2Tnum~ t !

Tnum~ t ! D 2

dt, ~27!

whereTnum(t) is the time-resolved transmittance comput
by the FEM simulation and the range of integrati
@ tmin ,tmax# depends on its temporal extent. The accuracy
the perturbation model can be quantitatively investigated
calculating the relative erroreDma

defined as

eDma
5

Dma2Dma, f i t

Dma
, ~28!

which expresses the deviation of the fitted valuesDma, f i t of
the absorptive inclusion from the expected one,Dma . This
error is basically a measure of the discrepancies betw
Tpert(t) andTnum(t) through the capability of the fitting pro
cedure of recovering from the perturbed modelTpert(t), the
expected valueDma of the absorption inclusion. Figures 5,
and 7 show the relative erroreDma

as a function of the ab

sorptive perturbationDma /ma in the range20.6 to 0.6 for
three values of the reduced scattering coefficientms8 ,
namely, ms850.5,1.0,1.5 mm21, respectively. Each figure
shows four panels corresponding to increasing values of
host absorption coefficient, ma50.005,0.01,0.02,0.025
mm21, and to four values of the radiusR of the inclusion
ranging fromR52.5 mm toR510 mm. The relative error
depends critically on the optical parameters of the host
dium.
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The general behavior that can be deduced from each
ure is that the relative error increases with increasing
absorption coefficient for given values ofms8 , R, and
Dma /ma . This can be understood by taking into account t
statistical weight factor exp$2*0

l @ma1Dma(r )#dl%, which de-
scribes the probability of survival of a photon following
trajectory of lengthl inside the region of the absorptive in
clusion and which accounts for the decrease of the trans
ted intensity. If we fix the value of the relative perturbatio
Dma /ma and consider increasing values ofma , the corre-
sponding absorption perturbationDma increases, leading to a
progressive reduction of the perturbed transmitted sig
with respect to the unperturbed one and to a correspon
decrease of the accuracy of the perturbation model. It
also be seen that the relative erroreDma

becomes higher for
increasing values of the sizeR of the inclusion, as can be
expected by considering that photon migration is more
fected by higher values of the size of the inclusion and, c
sequently, the perturbation model predictions become
accurate. Another feature that can be deduced from the
merical results reported in the plots is the evident asymm
of the relative error between positive and negative values
the relative absorptive perturbationDma /ma . The absolute
values of the relative error are higher for negative values
Dma /ma as compared to those computed for positive valu
a result that is consistent with our previous discussion

FIG. 7. Numerical calculation of the relative erroreDma
as a

function of the relative absorptive perturbationDma /ma for ms8
51.5 mm21. The four panels are obtained for increasing valu
~form top to bottom! of the absorption coefficient of the host me
dium: ma50.005, 0.01, 0.02, 0.025 mm21.
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discrepancies between the FEM-simulation-based con
dTnum(t)/T(t) and dTpert(t)/T(t) given in Eqs.~26a! and
~26b!. A photon passing through a positive absorptive inc
sion has a higher probability of being absorbed compare
that traversing the same path in a negative absorptive in
sion, leading in the former case to a transmittance signal
deviates less with respect to the unperturbed one. There
the fitting procedure is expected to be more accurate in
case of positive absorption inclusion. From the analysis
Figs. 5–7 it can also be clearly seen that the relative e
increases with increasing the reduced scattering coeffic
ms8 of the surrounding medium. For a degree of the relat
absorption perturbationuDma /mau<20%, the relative error
eDma

is less than 20% when the size of the inclusion isR

&5 mm in the considered range of the reduced scatte
coefficient ms8 and for absorption coefficient ma

<0.025 mm21.

V. CONCLUSIONS

To summarize, we have performed a detailed analysis
the problem of photon migration through a scattering s
containing a single absorptive inclusion whose absorp
coefficient is characterized by a Gaussian distribution in
radial direction. The analysis has been performed within
framework of the first-order perturbation approach to the d
fusion theory for a slab geometry and a coaxial measurem
arrangement. The proposed model can be used to des
the effect of an inclusion on light propagation through
otherwise homogeneous turbid medium for applications
nd

at
M

ys
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lated to functional imaging. An analytical expression h
been derived that accounts for the change in the tim
resolved transmittance in presence of the absorptive Ga
ian inclusion. The accuracy and the application range of
perturbed model has been investigated by comparing ti
resolved transmittance profiles obtained by the perturbed
pression with those obtained through the FEM simulations
the diffusion equation in presence of the inclusion. We ha
determined the relative error in recovering the absorpt
perturbation parameter of the inclusion by the fitting proc
dure. The analysis considered the case of absorptive in
sions located at the middle plane of the slab, since in
configuration the contrast functions attain their lower valu
Sizes and optical parameters of the inclusion and host
dium have been chosen so as to cover the range of value
practical interest in optical imaging of biological tissue.
has been shown that the perturbed model predictions bec
less accurate by increasing the size and the absorption c
ficient of the inclusion and also by increasing the values
the optical coefficient of the host medium. The propos
perturbation model attains an accuracy better than 20% w
the inclusion has a size less than 5 mm and the rela
absorptive perturbation parameteruDma /mau<20% in the
considered range of absorption and reduced scattering c
ficient of the host medium. Furthermore, the FEM simu
tions have shown that the accuracy of the perturbation mo
is less than 10% for sizes of the inclusion less than 2.5 m
over the extended range of the absorptive perturba
uDma /mau<60%.
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